
Package: NetworkRiskMeasures (via
r-universe)
September 8, 2024

Type Package

Title Risk Measures for (Financial) Networks

Version 0.1.4

Author Carlos Cinelli <carloscinelli@hotmail.com>, Thiago Cristiano
Silva <thiagochris@gmail.com>

Maintainer Carlos Cinelli <carloscinelli@hotmail.com>

Description Implements some risk measures for (financial) networks,
such as DebtRank, Impact Susceptibility, Impact Diffusion and
Impact Fluidity.

License GPL-3

LazyData TRUE

Suggests testthat, igraph, covr

Depends Matrix

Imports expm, ggplot2, dplyr

URL https://github.com/carloscinelli/NetworkRiskMeasures

BugReports https://github.com/carloscinelli/NetworkRiskMeasures/issues

RoxygenNote 7.0.2

Repository https://carloscinelli.r-universe.dev

RemoteUrl https://github.com/carloscinelli/networkriskmeasures

RemoteRef HEAD

RemoteSha 3813414a3d0a9d792fd483433c173975383702dd

Contents
communicability_matrix . 2
contagion . 3
criticality . 5
impact_susceptibility . 6

1

https://github.com/carloscinelli/NetworkRiskMeasures
https://github.com/carloscinelli/NetworkRiskMeasures/issues

2 communicability_matrix

matrix_estimation . 8
risk_matrix . 10
sim_data . 12

Index 14

communicability_matrix

Computes the communicability matrix

Description

The communicability of an adjacency matrix M is defined as exp(M) where M[i,j] can be interpreted
as the weighted sums of paths from i to j. Recall that exp(M) can be cast into a Taylor series
expansion with an infinite number additive terms. The function permits the evaluation of exp(M)
using the expm package or using a simpler mathematical approximation. In the second case, the
function truncates the infinite series by simply calculating the summation terms up to a pre-defined
number of factors.

Usage

communicability_matrix(x, terms = Inf, sparse = TRUE)

Arguments

x a square matrix or an igraph object.

terms truncates the communicability matrix evaluation up to a pre-defined number of
terms. If terms = Inf the function computes the matrix exponential using expm.

sparse should the function use sparse matrices when computing the communicability?
However, if terms = Inf the function will use expm which uses dgeMatrix-class.

Value

The function returns the communicability matrix.

References

Estrada, E. Hatano, N. (2008). Communicability in complex networks. Physical Review E, 77:036111.

Examples

Creating example data
Assets Matrix (bilateral exposures)
assets_matrix <- matrix(c(0, 10, 3, 1, 0, 2, 0, 3, 0), ncol = 3)
rownames(assets_matrix) <- colnames(assets_matrix) <- letters[1:3]

Capital Buffer
buffer <- c(a = 2, b = 5, c = 2)

contagion 3

Computing vulnerability
v <- vulnerability_matrix(assets_matrix, buffer, binary = TRUE)

Computing communicability of the vulnerability matrix
communicability_matrix(v)

contagion Contagion Simulations

Description

Given a matrix of exposures, a vector of buffers and weights (optional) the functions simulates
contagion for all the shock vectors provided. You may choose from the implemented propagation
contagion method or create you own propagation method. Details on how to create your own
method will be provided in a future version.

Usage

contagion(exposures,
buffer,
shock = "all",
weights = NULL,
method = c("debtrank", "threshold"),
...,
exposure_type = c("assets", "liabilities", "impact", "vulnerability"),
keep.history = FALSE,
abs.tol = .Machine$double.eps ^ 0.2,
max.it = min(1000, nrow(v)*10),
verbose = TRUE)

Arguments

exposures an adjacency matrix, (sparse) Matrix or an igraph object with the network
of bilateral exposures between vertices. By default, the function expects the
exposures in the form of an assets matrix in which A -> B means that A has an
asset with B. However, you can change that with the parameter exposure_type.
When using a matrix, preferably it should have rows and columns names.

buffer a numeric vector with the capital buffer for each vertex. Values should be in the
same row/column order as the network of bilateral exposures. The buffer is not
needed if exposure_type = "vulnerability".

shock a list with the shock vectors. If "all" (the default) the function will run a
simulation for the default of each vertex in the network.

weights default is NULL. You can use a numeric vector of weights to give some economic
significance to the measures, like, for instance, the total assets of the nodes.

4 contagion

method the contagion propagation method. Currently, you should use either "debtrank"
for the DebtRank propagation method or "threshold" for the traditional default
cascades. The DebtRank version implemented is the one proposed in Bardoscia
et al (2015). If you want to use the old "single-hit" DebtRank of Battiston et al
(2012), simply provide the argument single.hit = TRUE.

... other arguments to be passed to the contagion propagation method.

exposure_type character vector indicating the type of the bilateral exposures. It can be an
"assets" network (where A -> B means that A has an asset with B), a "liabilities"
network (where A -> B means that A has a debt with B), a (binary) "impact"
matrix (where A -> B indicates the relative impact of A in B’s capital buffer), or
a (binary) "vulnerability" matrix (where A -> B indicates the relative impact
A suffers from B’s default). The default is "assets".

keep.history keep all the history of stress levels? This can use a lot of memory, so the default
is FALSE.

abs.tol the desired accuracy.

max.it the maximum number of iterations.

verbose gives verbose output. Default is TRUE.

Value

The function returns an object of class "contagion" with the results of the simulation.

References

Bardoscia M, Battiston S, Caccioli F, Caldarelli G (2015) DebtRank: A Microscopic Foundation
for Shock Propagation. PLoS ONE 10(6): e0130406. doi: 10.1371/journal.pone.0130406

Battiston, S., Puliga, M., Kaushik, R., Tasca, P., and Caldarelli, G. (2012). DebtRank: Too central
to fail? Financial networks, the FED and systemic risk. Scientific reports, 2:541.

Examples

Loads simulated banking data
data("sim_data")
head(sim_data)

seed for reproducibility
set.seed(15)

minimum density estimation
verbose = F to prevent printing
md_mat <- matrix_estimation(sim_data$assets, sim_data$liabilities, method = "md", verbose = FALSE)

rownames and colnames for the matrix
rownames(md_mat) <- colnames(md_mat) <- sim_data$bank

DebtRank simulation
contdr <- contagion(exposures = md_mat, buffer = sim_data$buffer, weights = sim_data$weights,

shock = "all", method = "debtrank", verbose = FALSE)

criticality 5

summary(contdr)

plot(contdr)

Traditional default cascades simulation
contthr <- contagion(exposures = md_mat, buffer = sim_data$buffer, weights = sim_data$weights,

shock = "all", method = "threshold", verbose = FALSE)
summary(contthr)

simulating shock scenarios 1% to 25% shock in all vertices
s <- seq(0.01, 0.25, by = 0.01)
shocks <- lapply(s, function(x) rep(x, nrow(md_mat)))
names(shocks) <- paste(s*100, "pct shock")

cont <- contagion(exposures = md_mat, buffer = sim_data$buffer, shock = shocks,
weights = sim_data$weights, method = "debtrank", verbose = FALSE)

summary(cont)
plot(cont)

criticality Criticality of the vertices

Description

The criticality of a vertex measures its impact on its neighbors if it defaults. It is basically the
rowSums of the impact_matrix.

Usage

criticality(
exposures,
buffer,
binary = FALSE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

Arguments

exposures an adjacency matrix, (sparse) Matrix or an igraph object with the network
of bilateral exposures between vertices. By default, the function expects the
exposures in the form of an assets matrix in which A -> B means that A has an
asset with B. However, you can change that with the parameter exposure_type.
When using a matrix, preferably it should have rows and columns names.

buffer a numeric vector with the capital buffer for each vertex. Values should be in the
same row/column order as the network of bilateral exposures. The buffer is not
needed if exposure_type = "vulnerability".

binary if binary = TRUE the function computes a ’binary’ impact or vulnerability ma-
trix. It truncates all values less than 1 to 0 and all values greater than 1 to 1.

6 impact_susceptibility

exposure_type character vector indicating the type of the bilateral exposures. It can be an
"assets" network (where A -> B means that A has an asset with B), a "liabilities"
network (where A -> B means that A has a debt with B), a (binary) "impact"
matrix (where A -> B indicates the relative impact of A in B’s capital buffer), or
a (binary) "vulnerability" matrix (where A -> B indicates the relative impact
A suffers from B’s default). The default is "assets".

Value

The function returns a (named) vector with the criticality for each vertex.

Examples

Creating example data
Assets Matrix (bilateral exposures)
assets_matrix <- matrix(c(0, 10, 3, 1, 0, 2, 0, 3, 0), ncol = 3)
rownames(assets_matrix) <- colnames(assets_matrix) <- letters[1:3]

Capital Buffer
buffer <- c(a = 2, b = 5, c = 2)

Criticality
criticality(assets_matrix, buffer)

impact_susceptibility Impact Susceptibility, Fluidity and Diffusion

Description

The impact_susceptibility measures the feasible contagion paths that can reach a vertex in
relation to its direct contagion paths. When the impact susceptibility is greater than 1, it means that
the vertex is vulnerable to other vertices beyond its direct neighbors (remotely vulnerable).

The impact_fluidity is simply the average of the impact susceptibility in the network.

The impact_diffusion tries to capture the influence exercised by a node on the propagation of
impacts in the network. The impact diffusion of a vertex is measured by the change it causes on the
impact susceptibility of other vertices when its power to propagate contagion is removed from the
network.

All these measures are based on the communicability of the vulnerability matrix (see vulnerability_matrix
and communicability_matrix).

Usage

impact_susceptibility(
exposures,
buffer,
weights = NULL,

impact_susceptibility 7

terms = Inf,
sparse = TRUE,
binary = TRUE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

impact_fluidity(
exposures,
buffer,
weights = NULL,
terms = Inf,
sparse = TRUE,
binary = TRUE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

impact_diffusion(
exposures,
buffer,
weights = NULL,
terms = Inf,
sparse = TRUE,
binary = TRUE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

Arguments

exposures an adjacency matrix, (sparse) Matrix or an igraph object with the network
of bilateral exposures between vertices. By default, the function expects the
exposures in the form of an assets matrix in which A -> B means that A has an
asset with B. However, you can change that with the parameter exposure_type.
When using a matrix, preferably it should have rows and columns names.

buffer a numeric vector with the capital buffer for each vertex. Values should be in the
same row/column order as the network of bilateral exposures. The buffer is not
needed if exposure_type = "vulnerability".

weights default is NULL. You can use a numeric vector of weights to give some economic
significance to the measures, like, for instance, the total assets of the nodes.

terms truncates the communicability matrix evaluation up to a pre-defined number of
terms. If terms = Inf the function computes the matrix exponential using expm.

sparse should the function use sparse matrices when computing the communicability?
However, if terms = Inf the function will use expm which uses dgeMatrix-class.

binary if binary = TRUE the function computes a ’binary’ impact or vulnerability ma-
trix. It truncates all values less than 1 to 0 and all values greater than 1 to 1.

exposure_type character vector indicating the type of the bilateral exposures. It can be an
"assets" network (where A -> B means that A has an asset with B), a "liabilities"
network (where A -> B means that A has a debt with B), a (binary) "impact"

8 matrix_estimation

matrix (where A -> B indicates the relative impact of A in B’s capital buffer), or
a (binary) "vulnerability" matrix (where A -> B indicates the relative impact
A suffers from B’s default). The default is "assets".

Value

The impact_susceptibility function returns a vector with the (weighted) impact susceptibility

The impact_fluidity function returns a vector with the (weighted) impact fluidity of the network.

The impact_diffusion function returns a data.frame with the vertex name and the (weighted)
start, intermediate and total impact diffusion.

References

Silva, T.C.; Souza, S.R.S.; Tabak, B.M. (2015) Monitoring vulnerability and impact diffusion in
financial networks. Working Paper 392, Central Bank of Brazil.

Silva, T.C.; Souza, S.R.S.; Tabak, B.M. (2015) Network structure analysis of the Brazilian interbank
market . Working Paper 391, Central Bank of Brazil.

Examples

Creating example data
Assets Matrix (bilateral exposures)
assets_matrix <- matrix(c(0, 10, 3, 1, 0, 2, 0, 3, 0), ncol = 3)
rownames(assets_matrix) <- colnames(assets_matrix) <- letters[1:3]

Capital Buffer
buffer <- c(a = 2, b = 5, c = 2)

Measures
impact_susceptibility(assets_matrix, buffer)
impact_fluidity(assets_matrix, buffer)
impact_diffusion(assets_matrix, buffer)

matrix_estimation Matrix Estimation

Description

Methods for estimating matrix entries from the marginals (row and column sums).

There are currently two methods implemented: Maximum Entropy (Upper 2004) and Minimum
Density (Anand et al. 2015).

You may use the matrix_estimation() function, setting the desired method. Or you may use
directly the max_ent() function for maximum entropy estimation or the min_dens() function for
minimum density estimation.

matrix_estimation 9

Usage

matrix_estimation(
rowsums,
colsums,
method = c("me", "md"),
...,
max.it = 1e+05,
abs.tol = 0.001,
verbose = TRUE

)

max_ent(rowsums, colsums, max.it = 1e+05, abs.tol = 0.001, verbose = TRUE)

min_dens(
rowsums,
colsums,
c = 1,
lambda = 1,
k = 100,
alpha = 1/sum(rowsums),
delta = 1/sum(rowsums),
theta = 1,
remove.prob = 0.01,
max.it = 1e+05,
abs.tol = 0.001,
verbose = TRUE

)

Arguments

rowsums a numeric vector with the row sums.

colsums a numeric vector with the column sums.

method the matrix estimation method. Choose "me" for maximum entropy or "md" for
minimum density.

... further arguments passed to or from other methods.

max.it the maximum number of iterations.

abs.tol the desired accuracy.

verbose gives verbose output. Default is TRUE.

c the ’cost’ an extra link for the minimum density estimation. See Anand et al.
(2015).

lambda you should use lamda together with k. For the first k rounds of the algorithm,
the function will allocate a fraction lambda of the total, thus obtaining a "low
density" solution, instead of a "minimum density" solution. See Anand et al.
(2015).

k you should use lamda together with k. For the first k rounds of the algorithm,
the function will allocate a fraction lambda of the total, thus obtaining a "low

10 risk_matrix

density" solution, instead of a "minimum density" solution. See Anand et al.
(2015).

alpha weights for the row sums deviations. See Anand et al. (2015).

delta weights for the column sums deviations. See Anand et al. (2015).

theta scaling parameter. Emphasizes the weight placed on finding solutions with sim-
ilar characteristics to the prior matrix. See Anand et al. (2015).

remove.prob probability to randomly remove a link during the algorithm. See Anand et al.
(2015).

Value

The functions return the estimated matrix.

References

Upper, C. and A. Worm (2004). Estimating bilateral exposures in the German interbank market: Is
there a danger of contagion? European Economic Review 48, 827-849.

Anand, K., Craig, B. and G. von Peter (2015). Filling in the blanks: network structure and interbank
contagion. Quantitative Finance 15:4, 625-636.

Examples

Example from Anand, Craig and Von Peter (2015, p.628)

Liabilities
L <- c(a = 4, b = 5, c = 5, d = 0, e = 0, f = 2, g = 4)

Assets
A <- c(a = 7, b = 5, c = 3, d = 1, e = 3, f = 0, g = 1)

Maximum Entropy
ME <- matrix_estimation(A, L, method = "me")
ME <- round(ME, 2)

Minimum Density
set.seed(192)
MD <- matrix_estimation(A, L, method = "md")

risk_matrix Computes the (binary) impact or vulnerability matrices

Description

The function computes an impact or vulnerability matrix given a network of bilateral exposures and
a vector of capital buffers.

risk_matrix 11

Usage

risk_matrix(
exposures,
buffer,
binary = FALSE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability"),
returns = c("impact", "vulnerability")

)

vulnerability_matrix(
exposures,
buffer,
binary = FALSE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

impact_matrix(
exposures,
buffer,
binary = FALSE,
exposure_type = c("assets", "liabilities", "impact", "vulnerability")

)

Arguments

exposures an adjacency matrix, (sparse) Matrix or an igraph object with the network
of bilateral exposures between vertices. By default, the function expects the
exposures in the form of an assets matrix in which A -> B means that A has an
asset with B. However, you can change that with the parameter exposure_type.
When using a matrix, preferably it should have rows and columns names.

buffer a numeric vector with the capital buffer for each vertex. Values should be in the
same row/column order as the network of bilateral exposures. The buffer is not
needed if exposure_type = "vulnerability".

binary if binary = TRUE the function computes a ’binary’ impact or vulnerability ma-
trix. It truncates all values less than 1 to 0 and all values greater than 1 to 1.

exposure_type character vector indicating the type of the bilateral exposures. It can be an
"assets" network (where A -> B means that A has an asset with B), a "liabilities"
network (where A -> B means that A has a debt with B), a (binary) "impact"
matrix (where A -> B indicates the relative impact of A in B’s capital buffer), or
a (binary) "vulnerability" matrix (where A -> B indicates the relative impact
A suffers from B’s default). The default is "assets".

returns will the function return the impact or the vulnerability matrix? The default is
"impact".

Details

The impact matrix represents how much a vertex impacts the capital buffer of another vertex when
it defaults.

12 sim_data

The vulnerability matrix is just the transpose of the impact matrix. It represents how much a vertex
is impacted by the default of another vertex.

Value

The function returns a (binary) impact or vulnerability matrix.

The term V[i,j] of the impact matrix represents the impact of i’s default in j’s capital buffer.

The term V[i,j] of the vulnerability matrix represents how much i’s capital buffer is impacted by j’s
default.

If binary = TRUE the values less than 1 are truncated to zero.

Examples

Creating example data
Assets Matrix (bilateral exposures)
assets_matrix <- matrix(c(0, 10, 3, 1, 0, 2, 0, 3, 0), ncol = 3)
rownames(assets_matrix) <- colnames(assets_matrix) <- letters[1:3]

Capital Buffer
buffer <- c(a = 2, b = 5, c = 2)

Vulnerability matrices
vulnerability_matrix(assets_matrix, buffer, binary = FALSE)
vulnerability_matrix(assets_matrix, buffer, binary = TRUE)

sim_data Simulated Interbank Data

Description

A simulated dataset with interbank assets, liabilities, capital buffer and weights for 125 "banks".
The code to generate the data is on the examples.

Format

A data frame with 125 rows and 5 variables

Examples

Simulated data for ilustration purposes

Setting Seed
set.seed(1100)

Heavy tailed assets
assets <- rlnorm(125, 0, 2)
assets[assets < 4] <- runif(length(assets[assets < 4]))

sim_data 13

Heavy tailed liabilities
liabilities <- rlnorm(125, 0, 2)
liabilities[liabilities < 4] <- runif(length(liabilities[liabilities < 4]))

Making sure assets = liabilities
assets <- sum(liabilities) * (assets/sum(assets))

Buffer as a function of assets
buffer <- pmax(0.01, runif(length(liabilities))*liabilities + abs(rnorm(125, 4, 2.6)))

Weights as a function of assets, buffer and liabilities
weights <- (assets + liabilities + buffer + 1) + rlnorm(125, 0, 1)

creating data.frame
sim_data <- data.frame(bank = paste0("b", 1:125),

assets = assets,
liabilities = liabilities,
buffer = buffer,
weights = weights)

Index

∗ dataset
sim_data, 12

communicability_matrix, 2, 6
contagion, 3
criticality, 5

data.frame, 8

expm, 2, 7

igraph, 2, 3, 5, 7, 11
impact_diffusion

(impact_susceptibility), 6
impact_fluidity

(impact_susceptibility), 6
impact_matrix, 5
impact_matrix (risk_matrix), 10
impact_susceptibility, 6

Matrix, 3, 5, 7, 11
matrix, 2, 3, 5, 7, 11
matrix_estimation, 8
max_ent (matrix_estimation), 8
min_dens (matrix_estimation), 8

risk_matrix, 10
rowSums, 5

sim_data, 12

vulnerability_matrix, 6
vulnerability_matrix (risk_matrix), 10

14

	communicability_matrix
	contagion
	criticality
	impact_susceptibility
	matrix_estimation
	risk_matrix
	sim_data
	Index

